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a b s t r a c t

Since their initial description, phased array coils have become increasingly popular due to their ease of
customization for various applications. Numerous methods for combining data from individual channels
have been proposed that attempt to optimize the SNR of the resultant images. One issue that has received
comparatively little attention is how to apply these combination techniques to a series of images
obtained from phased array coils that are then analyzed to produce quantitative estimates of tissue
parameters. Herein, instead of the typical goal of maximizing the SNR in a single image, we are interested
in maximizing the accuracy and precision of parameter estimates that are obtained from a series of such
images. Our results demonstrate that a joint Bayesian analysis offers a ‘‘worry free” method for obtaining
optimal parameter estimates from data generated by multiple coils (channels) from a single object
(source). We also compare the properties of common channel combination techniques under different
conditions to the results obtained from the joint Bayesian analysis. If the noise variance is constant for
all channels, a sensitivity weighted average provides parameter estimates equivalent to the joint analysis.
If both the noise variance and signal intensity are similar in all channels, a simple channel average gives
an adequate result. However, if the noise variance differs between channels, an ‘‘ideal weighted”
approach should be applied, where data are combined after weighting by the channel amplitude divided
by the noise variance. Only this ‘‘ideal weighting” provides results similar to the automatic-weighting
inherent in the joint Bayesian approach.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since their early description [1], phased array coils have become
increasingly widespread due to their ease of customization for var-
ious applications. Their recent surge in popularity can be traced to
improvements in coil technologies and the development of rapid
imaging techniques that utilize the spatial information from the
phased array coils to decrease acquisition times [2,3]. However,
these coils are also used in more traditional imaging experiments
simply for their flexibility and increased signal-to-noise ratio (SNR).

Numerous investigators [1,4–9] have attempted to optimize the
SNR of images from phased array coils and proposed various tech-
niques for combining such data. Roemer [1,5] and others [6,7,9]
have suggested that the sum-of-squares (SOS) combination pro-
vides a near optimal signal-to-noise ratio in the reconstructed im-
age, approaching that of a reconstruction using the ‘‘correct”
channel sensitivity profile without requiring additional acquisi-
tions. Others have refined this technique by weighting the chan-
nels using more complex factors that reduce the impact of local
ll rights reserved.
signal and noise fluctuations and more accurately characterize
the true coil response profiles [6,8,10–12]. These weighting factors
are commonly obtained from either a smoothed version of the data
itself or a separately acquired lower-resolution image.

One issue that has received relatively little attention is how the
different channel combination techniques affect parameter esti-
mates obtained from modeling the signal in a series of images
[11,13]. Here, we are interested in maximizing the accuracy and
precision of parameter estimates that are obtained from a series
of array coil images. In addition to SNR optimization, this imposes
the additional constraint of accurately preserving the relationships
between the series images.

We also explore the effects of various channel combination
methods on the accuracy and precision of parameter estimates
and examine the case where the common assumption of equal
noise power across channels is violated. In the simplest method
for combining channels, the channel average or sum, all channels
are treated equally. When signals of differing SNR are averaged,
information from the high SNR channels are diluted by the lower
SNR channels, resulting in less accurate and less precise parameter
estimates [14]. Such variations in signal and noise power across
channels are common in real imaging experiments as the array ele-
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ments are seldom equidistant from a particular region of interest. If
there are systematic effects in the data that are not properly mod-
eled (e.g. the Rican noise profile induced by processing the magni-
tude images from each channel), they can coherently combine and
further distort the parameter estimates. Channels may also experi-
ence different loading due to their placement on different parts of
the sample or patient, and will have some degree of coupling. Thus,
the simple averaging of channels is rarely advisable.

Sensitivity-weighted averaging attempts to mitigate these ef-
fects by accounting for spatial variations in signal intensity for each
channel. However, these methods do not account for variations in
noise power between channels and can still magnify systematic ef-
fects and artifacts in the data. If the channel weighting factors for
each image in a series is derived from its own intensity, these
weighting factors will differ across the series images, potentially
biasing the parameter estimates. An extreme case of this occurs
with the sum-of-squares (SOS) combination of images. While re-
ported to provide a ‘‘near-optimal” SNR, the SOS combination also
artificially distorts the relationships between images in a series by
forcing all low SNR points to take positive values, introducing a DC
offset that coherently combines across channels. For an exponen-
tial decay model, this increased noise floor produces a systematic
underestimation of the decay rate constant and will affect the
accuracy and precision of rate constant estimation, as previously
described [6,15–20].

As an alternative to determining the optimal channel weighting
factors for a given experimental setup, we could also analyze mul-
ti-channel data without signal combination. The signals from the
various channels can be jointly analyzed with a model that allows
the channel-specific properties (such as signal amplitude and noise
power) to vary across channels while requiring the MRI properties
inherent to the imaged object (such as a decay rate constant) to be
identical for all channels. We have implemented this framework
using Bayesian probability theory and demonstrate its benefits
for modeling simulated multi-channel data compared to more tra-
ditional combination techniques. For simplicity, we consider here
only the mono-exponential decay model prevalent in MR, but
these general principles have an obvious extension to more com-
plex estimation problems. We conclude that a joint Bayesian anal-
ysis offers a ‘‘worry free” method for obtaining optimal parameter
estimates from multi-channel data.
2. Theory

A ubiquitous model in MRI experiments is the mono-exponen-
tial decay. For simplicity of the analysis below, we assume a simple
mono-exponential analysis without a constant, such as in T2 or dif-
fusion measurements. For an array of M-channels used to acquire
decay measurements at N different times, the measured signal
can be expressed as:

SmðtnÞ ¼ Am expð�R tnÞ þ gmðtnÞ; ð1Þ

where SmðtnÞ is the signal measured on the mth channel at the nth
sampling time (or b-value in the case of the diffusion experiment),
gmðtnÞ is the noise in the mth channel at the nth sampling time tn,
Am is the signal amplitude in channel m, and R is a rate constant
(e.g. R2 or ADC). While we assume for simplicity that the channels
are sampled simultaneously, which is typically the case, and that
there is no coupling between coils, no other assumptions are made
as to the distribution of data samples in time. The rate constant is
treated as an inherent property of the sample, and is therefore inde-
pendent of which channel is performing the measurement, whereas
the signal amplitude and the noise are properties of each channel.

NMR/MRI scanners typically produce a complex signal (quadra-
ture detection), and the real and imaginary components are com-
monly combined to produce a magnitude signal or image. For
our purposes, the complex signal from each channel is assumed
to have been ‘‘phased”, i.e. the coherent signal moved entirely to
the real channel, and only the real signals are analyzed [21,22].
This produces an improvement in SNR and removes the bias intro-
duced by using magnitude images. An alternative would be the
simultaneous analysis of the real and imaginary components from
all channels. However, as this would complicate the model by
introducing an additional amplitude (or phase) for each channel,
we will assume for simplicity that the data have already been
phased.

In Bayesian analysis, we are interested in calculating pðARjDrIÞ,
the joint posterior probability of the model parameters A and R gi-
ven the data, D, the standard deviation of the noise prior probabil-
ity, r, and the prior information, I. Using Bayes’ theorem and the
product rule, omitting constant terms that will cancel upon nor-
malization, and assuming independence in our prior knowledge
of A, R, and r, this can be expressed as

pðAR DrIj Þ / pðRjIÞpðAjIÞpðDjARrIÞ: ð2Þ

In this equation, pðAjIÞ and pðRjIÞ are the prior probabilities of the
parameters A and R, and represent what is known about the possi-
ble values of these parameters before acquiring the data; pðDjARrIÞ
is the direct probability of the data given the parameters and is pro-
portional to a likelihood function.

Initially, we consider the signal generated by a single channel
and calculate the expected uncertainty in the resultant parameter
estimates. Using uniform and comparatively non-informative pri-
ors, the joint posterior probability of the model parameters in Eq.
(2) can be expressed as [14,23,24]

pðARjDrIÞ / exp � Q
2r2

� �
; Q ¼

XN�1

n¼0

DðtnÞ � A expð�RtnÞ½ �2: ð3Þ

In the majority of exponential decay experiments, the actual value
of the amplitude parameter is of little interest and we are primarily
concerned with estimation of the rate constants. In such cases, the
amplitudes can be removed from the analysis by calculating the
marginal probability for the decay rate constant, R. This requires
integrating Eq. (3) over all possible values of A:

pðRjDrIÞ /
Z

dA pðARjDrIÞ /
Z

dA exp � Q
2r2

� �
: ð4Þ

Assuming high SNR, that the data are sampled at uniformly spaced
times, and that the data are acquired until the exponential decays
into the noise, the uncertainty in the decay rate constant estimate
for a single channel was previously estimated as the standard devi-
ation of the posterior probability distribution for parameter R,ffiffiffiffiffiffiffiffiffiffiffiffiffi

8R̂3Dt
p

=SNR, where Dt is the sampling interval between data
points and R̂ is the true value of the rate constant [25].

To broaden the applicability of this result to imaging experi-
ments, here we relax the assumptions of uniform sampling and
acquiring data until the signal decays into the noise. In the next
section, we will also expand this result to the multi-channel case.
To analytically evaluate Q in Eq. (4), the data are expressed in
terms of Â, R̂, and ĝðtnÞ, the true values of the amplitude, rate con-
stant, and noise:

DðtnÞ ¼ Â expð�R̂tnÞ þ ĝðtnÞ: ð5Þ

In the high SNR approximation, which allows us to neglect the noise
term from Eq. (5), evaluation of the amplitude integral in Eq. (4) and
omitting constant terms produces the marginal probability for the
rate constant in the form:

pðRjDrIÞ / exp
ðd � GÞ2

2r2ðG � GÞ

 !
; ð6Þ
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where d is a vector of data values acquired at the N sampling times
and the elements of the model vector, G ¼ fGng, are defined as
Gn ¼ expð�RtnÞ.

Note that the specific time dependence of the signal determines
only the form of the vectors d and G. The basic structure of Eq. (6)
will occur with any signal model containing a single marginalized
amplitude, not just for the mono-exponential model considered
here.

In the high SNR regime, the marginal probability for the decay
rate constant R in Eq. (6) has a maximum at R ¼ R̂. Using a sec-
ond-order Taylor series expansion about R̂, we obtain:

pðRjD;r; IÞ / exp �ðR� R̂Þ2

2r2
R

 !
; ð7Þ

where

rR ¼
R̂

SNR
FðR̂; tÞ; t ¼ ft1; t2; . . . ; tng;

FðR̂; tÞ ¼ R0

R0R2 � R2
1

� �
2
4

3
5

1=2

; Rj ¼
XN�1

n¼0

ðR̂ tnÞj expð�2R̂ tnÞ: ð8Þ

Here rR is the standard deviation of the posterior probability
distribution for parameter R, effectively representing the predicted
uncertainty in the parameter estimate, and SNR ¼ Â=r is the signal-
to-noise ratio for the un-attenuated signal (t = 0).

As expressed in Eqs. (7) and (8), estimation of the decay rate
constant and calculation of the uncertainty in its estimation, rR,
require explicit knowledge of the noise standard deviation for
each channel. This dependence can be removed by integrating
over all possible values of the noise standard deviation, analo-
gous to what was done with the signal amplitude above. While
this approach is generally useful, if the number of sampling
times is small then the data contains only minimal information
about the standard deviation of the noise and this extra degree
of freedom in the calculation would produce a significantly
greater uncertainty in the estimate of the rate constant com-
pared to when the noise standard deviation is explicitly in-
cluded. For simplicity, we will utilize only two sampling times
in the simulations below and therefore will assume that the
noise standard deviation is accurately known for each channel
and insert these values into Eqs. (7) and (8). Analysis of simu-
lated data after marginalization of the noise standard deviation
produced larger but qualitatively similar parameter uncertainties
(data not shown).

2.1. Joint analysis

The uncertainty in the decay rate constant from the joint anal-
ysis of data simultaneously measured from M independent chan-
nels can be similarly derived. Starting from Eq. (2), we now allow
A, r, and D to symbolize the set of amplitudes, noise standard devi-
ations, and data for all channels, A ¼ fAmg, D ¼ fDmg, and
r ¼ frmg. Assuming that the amplitude and noise from the differ-
ent channels are effectively independent, i.e. the noise is uncorre-
lated between channels, each term in Eq. (2) can be expanded as
the product of the probabilities for the individual channels. If we
again use uniform and comparatively non-informative priors, this
produces:
pðARjDrIÞ �
Y

m

PðAmRjDmrmIÞ / exp �1
2

XM

m¼1

Qm

r2
m

 !

Qm ¼
XN�1

n¼0

DmðtnÞ � SmðtnÞ½ �2;
ð9Þ
analogous to Eq. (3). The marginal posterior probability for R is ob-
tained by integrating the joint posterior probability in Eq. (9) over
all of the amplitudes, A, producing:

pðRjDrIÞ /
Y

m

exp
ðd � GÞ2

2r2ðG � GÞ

 !
: ð10Þ

To obtain an analytic expression for the rate constant uncertainty,
we again utilize a Taylor series expansion about the rate constant,
producing:

pðRjDrIÞ / exp � ðR� R̂Þ2

2 rjoint
R

� �2

0
B@

1
CA; ð11Þ

where

rjoint
R ¼ R̂

SNRjoint
eff

FðR̂; tÞ: ð12Þ

Here, the function FðR̂; tÞ is still defined by Eq. (8) and SNRjoint
eff is the

effective signal-to-noise ratio for the jointly analyzed data, given
by:

SNRjoint
eff ¼

XM

m¼1

SNR2
m

 !1=2

; SNRm ¼
Âm

rm
: ð13Þ

When the noise level is identical for all the channels, rm ¼ r, the
effective SNR reduces to

SNRjoint
eff ¼

ðA2Þ1=2

r
�
ffiffiffiffiffi
M
p

; A2 ¼ 1
M

XM

m¼1

Â2
m: ð14Þ

Further, if the signals in all channels are characterized by the same
SNR, then SNRjoint

eff ¼ SNR �
ffiffiffiffiffi
M
p

and Eq. (12) reduces to

rjoint
R ¼ R̂

SNR �
ffiffiffiffiffi
M
p � FðR̂; tÞ ð15Þ

i.e. when all channels have identical SNR, the uncertainty in the
parameter estimate for R decreases as the square root of the num-
ber of channels, as expected.

2.2. Weighted average analysis

For comparison, we explore an alternative where the signals
from different channels are combined prior to analysis. The most
general method is to ‘‘weight” the signal from each channel by a
channel-specific factor, km, and generate the average weighted
signal,

DWAvðtnÞ ¼
1
M

XM

m¼1

kmDmðtnÞ: ð16Þ

For an un-weighted average, km ¼ 1; for sensitivity weighting,
km ¼ Âm, which is approximated here for each channel by its signal
in the un-weighted (t = 0) image. The noise standard deviation in
each channel is also weighted by the same factor: rm ! kmrm. If
the noise is uncorrelated across channels, then the effective noise
in the combined data is equal to rWAv ¼ ð

PM
m¼1k

2
mr2

mÞ
1=2
=M. Here,

we assume that for each channel, all N images in the series are
weighted using the same channel-specific factor.

With joint analysis, ‘‘weighting” the channels does not alter the
effective SNR in Eq. (13) as the scaling factors for the amplitude
and noise standard deviation cancel. However, if the signals are
averaged after scaling, as in Eq. (16), then the uncertainty in Eq.
(12) becomes
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rWAv
R ¼ R̂

SNRWAv
eff

FðR̂; tÞ; ð17Þ

where the effective SNR, SNRWAv
eff is:

SNRWAv
eff ¼

PM
m¼1 kmÂmPM

m¼1 k2
mr2

m

� �1=2 : ð18Þ

To compare the effective SNR from the joint analysis, Eq. (13), to the
effective SNR from weighted averaging, Eq. (18), it is convenient to
introduce the variables xm ¼ Âm=rm and ym ¼ kmrm, allowing us to
rewrite the ratio of the two effective SNRs as:

SNRWAv
eff

SNRjoint
eff

¼
PM

m¼1 xmymPM
m¼1 x2

m �
PM

m¼1 y2
m

� �1=2 : ð19Þ

According to the Cauchy inequality, the ratio in the right-hand side
of Eq. (19) is always less than or equal to 1. Therefore, SNRWAv

eff from
weighted averaging cannot exceed SNRjoint

eff from the joint analysis:

SNRWAv
eff 6 SNRjoint

eff : ð20Þ

The SNRs in Eq. (20) coincide if and only if ym ¼ cxm for all m, where
c is an arbitrary positive coefficient. Thus, when combining chan-
nels using weighted averaging, the maximum SNRWAv

eff and, therefore
the best estimate of the parameter R̂, can be achieved using the
weighting factors:

km ¼ cÂm=r2
m: ð21Þ

The coefficient c is a common scaling factor which cancels from the
expression for SNRWAv

eff and can therefore be set equal to 1. It is easy
to verify that SNRWAv

eff in Eq. (18) with km from Eq. (21) exactly coin-
cides with SNRjoint

eff in Eq. (13) obtained by the joint analysis. Hence,
Eq. (21) provides an optimal weighting algorithm.

It should be noted, however, that obtaining a pixel-wise esti-
mate of the signal amplitude and noise levels for each channel is
not always practical, especially for low SNR cases, and any errors
in these estimates would propagate into bias and/or increased
uncertainties in the parameter estimation. The commonly used
sensitivity weighting, km ¼ Âm, provides the optimal weighting,
with effective SNR equivalent to the joint analysis, if and only if
the noise standard deviation is the same in all the channels,
rm ¼ r. The effective SNR using the un-weighted average, km ¼ 1,
is always lower than the effective SNR from the joint analysis, ex-
cept for the trivial case when the signal amplitudes and noise lev-
els on each channel are identical.

2.3. Sum-of-squares

The most commonly utilized technique for processing multi-
channel data (and the default option on many MRI scanners),
involves combining the magnitude data from each channel by
calculating the square root of the sum-of-squares (SOS):

DSOSðtnÞ ¼
XM

m¼1

jDmðtnÞj2
" #1=2

ð22Þ

where jDmðtnÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe DmðtnÞÞ2 þ ðIm DmðtnÞÞ2

q
is the magnitude of

the complex data.
It is important to note the significant differences between SOS

and the other combination techniques outlined above. In the SOS
analysis, the channel weighting factors vary for each image in a
series, potentially distorting the decay behavior. If we consider
the SOS as a special case of the weighted average, then each data
point is effectively used as its own weighting factor (sensitivity
map). Since the SNR of the images decreases as tn increases, the
sensitivity map estimate is necessarily of lower quality at later
time points. Thus, we would expect parameter estimates from this
method to be less accurate than those from weighting the images
by a constant sensitivity map derived from the highest SNR image
(or a high SNR reference image). As the sum-of-squares forces all
data values to be positive, it also introduces a well-known DC off-
set that can significantly distort the decay behavior and introduce a
substantial, sampling time-dependent bias in the estimate of the
rate constant. Although not commonly performed, the sum-of-
squares across channels can also be calculated using only the real
images from each channel, after phasing. We do so here, in order to
maintain a fair comparison between combination methods, with
the understanding that the additional use of magnitude data would
be expected to worsen the accuracy of the parameter estimates.

At present, the above theoretical analysis of the parameter
uncertainty cannot be directly applied to SOS data as the channel
weighting factors, and therefore the noise power, change for each
time point. Incorporation of these effects would require a substan-
tial expansion of the above theory and the mathematical form of
these expressions would be significantly less tractable. However,
we can still examine the accuracy of the parameter estimates pro-
duced by the analysis of SOS data as the value of the standard devi-
ation of the noise prior probability, r, does not affect the location
of the maximum in Eq. (4), though the actual noise values do.

While the bias inherent in obtaining parameter estimates from
magnitude data in a single channel system is widely known, few
have considered the impact of the SOS combination of array images
on parameter estimation [11]. Below, we analyze simulated data to
compare the bias in the decay rate constant obtained by the SOS
approach with the alternate approaches developed in the current
manuscript.

3. Computer simulations

The theoretical equations derived above provide a lower-bound
estimate of the expected parameter uncertainties for experiments
using arbitrary signal combination techniques. However, due to its
approximations, this theory may lose accuracy with low SNR data.
To validate the theory and establish its accuracy, we analyzed com-
puter simulated data and compare the uncertainties in the param-
eter estimation to the theoretically predicted values. This approach
also measures the bias of the resulting parameter estimates at var-
ious SNR levels.

Simulated data were generated and analyzed using MATLAB
(R2007b, Mathworks, Natick, MA) on a Windows XP workstation.
For every parameter combination below, 160,000 synthetic one-
or two-channel datasets were generated using Eq. (1) at two mea-
surement times (t0 ¼ 0, t1 ¼ 1 s) and a decay rate constant
(R0 ¼ 1 s�1). Independent Gaussian noise was added to each chan-
nel to the desired SNR.

3.1. One channel simulations

For each dataset in the one channel simulations, we determined
the marginal probability distribution for the decay rate constant R̂
using Eq. (6) and the maximum and standard deviation of each dis-
tribution was selected as the parameter estimate and its uncer-
tainty. The median of these values across simulations was
calculated, to minimize the effect of outlying datasets, and com-
pared to the theoretically predicted uncertainty from Eq. (8). Data
for this analysis were generated with SNR values of 50, 40, 30, 25,
20, 15, 10, and 5:1.

Fig. 1 compares rR, the percent uncertainty in the rate constant
estimate for a one channel dataset predicted from Eq. (8) (solid
line), and the median percent standard deviation (% SD) of R̂ from
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overlap the joint analysis when the amplitude is varied and overlap the average
analysis when the noise power is varied between channels. The optimally weighted
data would overlap the results from the joint analysis under all conditions. For
clarity, these overlapping results are omitted from the graph.
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the Bayesian analysis (symbols), as functions of SNR. For one chan-
nel data at sufficiently high SNR (SNR P 15), the theoretical values
of the rate constant uncertainty, rR, are in excellent agreement
with the % SD obtained from simulated data, whereas significant
deviations appear at low SNR.

3.2. Two channel simulations

The computer simulations for a two-channel system were per-
formed as follows. The first channel always had SNR of 25 and
the second channel had SNR values of 25, 20, 15, 10, or 5:1. Every
SNR value less than 25 was repeated twice; first by reducing the
signal amplitude on the second channel and second by increasing
the noise standard deviation, thereby producing a total of nine
SNR combinations. Each simulated two-channel dataset was ana-
lyzed jointly and after channel combination using each of the fol-
lowing techniques: (i) average intensity – Eq. (16) with km ¼ 1,
(ii) sensitivity weighted average – Eq. (16) with km ¼ Âm, (iii) an
‘‘optimally weighted” average with km ¼ Âm=r2

m, and (iv) square
root of the sum of squares. For each dataset, the marginal probabil-
ity distribution for the rate constant R̂ for the averaged and joint
analyses was determined using Eq. (6) or Eq. (10), and the maxi-
mum and standard deviation of each distribution was selected as
the parameter estimate and its uncertainty. For the SOS analysis,
the parameter estimates were also determined using Eq. (6), how-
ever the parameter uncertainty was not calculated due to the
ambiguity in the value of the noise standard deviation, as de-
scribed above. The maximum of the probability distributions was
calculated with a resolution of 0.0025 s�1.

The theoretically expected percent uncertainties in the decay
rate constant estimates, rR, are shown in Fig. 2 for each combina-
tion method as functions of SNR2, the SNR in the second channel.
For comparison, the expected percent uncertainty in the decay rate
constant estimates from analyzing the high SNR channel alone (de-
noted below as rR;1Ch) is also shown (horizontal line in Fig. 2). The
symbols of each color represent the median percent uncertainty in
the rate constant, over all 160,000 simulated datasets using that
combination technique. The estimates of the rate constant uncer-
tainty obtained by ‘‘optimal weighting” for both constant noise
power and constant signal amplitude exactly coincide with the
uncertainty obtained by the joint analysis, as does the uncertainty
from ‘‘sensitivity map” averaging when SNR2 is decreased by
reducing signal amplitude. The uncertainty obtained by ‘‘sensitiv-
ity map” weighting when the noise standard deviation is increased
in the second channel exactly coincides with the uncertainty from
the un-weighted average under the same conditions. For clarity,
these overlapping results are not separately displayed in Fig. 2.
There is an excellent agreement between the theoretical predic-
tions for the rate constant uncertainty, rR, and the values obtained
from simulated data for all the combination methods over the
range of SNR studied.

When both the signal amplitude and noise standard deviation
in the two channels are the same (A1 ¼ A2, r1 ¼ r2, Fig. 2 right
side), the average, joint, and sensitivity weighted average analyses
all produce equivalent uncertainties, equal to the rR;1Ch=

ffiffiffi
2
p

, as ex-
pected, where rR;1Ch is the uncertainty from analyzing the high SNR
channel alone. As SNR2 is reduced, rR produced by the joint analy-
sis increases smoothly towards, but remains lower than rR;1Ch. In
contrast, rR obtained from the average analysis can become higher
than the one channel result as SNR2 decreases.

It is important to note that rR obtained by the average analysis
(weighted and un-weighted) depends both upon the SNR of the
second channel, SNR2, and the whether the signal amplitude, A2,
or the noise standard deviation, r2 differs from the first channel.
If the two channels have identical noise powers, as the SNR de-
creases by decreasing the amplitude in the second channel, rR

from the sensitivity weighted average mimics the joint analysis
and increases towards the single channel result, whereas the un-
weighted average increases towards rR;1Ch �

ffiffiffi
2
p

. However, if the
two channels have identical amplitudes, as the SNR decreases by
increasing the noise power in the second channel, the uncertainty
in the rate constant estimate for both the sensitivity-weighted and
un-weighted averages rapidly increases and becomes proportional
to the noise power in the second channel, r2. This is in sharp con-
trast to the joint Bayesian analysis, which is independent of the
method of changing SNR in the regime considered here.

This theory was also utilized to generate Fig. 3, which show the
expected rate constant uncertainty relative to the one channel re-
sult, rR=rR;1Ch, for an M-channel array where all channels other
than the first have identical, lower SNRs, denoted as SNR2. These
results are plotted as functions of SNR2=SNR1 for different numbers
of channels with the lower SNR. Fig. 3a corresponds to the joint
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Fig. 3. Theoretical uncertainties in estimation of a decay rate constant for different
numbers of channels, as a function of the relative SNR in channels other than the
first. The uncertainties are normalized to the uncertainty from analysis of the high
SNR channel alone. (a) Joint channel analysis. (b) Analysis of the un-weighted
average when the amplitude varies between channels. (c) Analysis of the un-
weighted average when the noise power varies. As the channels become identical,
all combination methods converge to the expected sqrt(M) lower than the one
channel uncertainty, as expected. The results for a sensitivity weighted average
would overlap the joint analysis when the amplitude is varied and the average
analysis when the noise power is varied.
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analysis are independent of whether the noise or amplitude of the second channel is
varying.
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analysis, Fig. 3b to un-weighted averaging of channels with varying
amplitudes and Fig. 3c to un-weighted averaging of channels with
varying noise standard deviations. We see that the uncertainty in R̂
from the joint analysis always improves with additional channels,
even at low SNR. As expected, this uncertainty converges to the one
channel result, rR;1Ch, when the lower SNR channels contain no sig-
nal and to rR;1Ch=

ffiffiffiffiffi
M
p

as the SNR in all channels becomes equal. The
uncertainty from the averaged data also converges to rR;1Ch=

ffiffiffiffiffi
M
p

as
the SNR in all channels becomes equal. However, as SNR2 de-
creases, rR from averaged data can become larger than the one
channel result. If all M channels have identical noise powers, the
uncertainty from the un-weighted average converges to
rR;1Ch �

ffiffiffiffiffi
M
p

as the SNR of the additional channels decreases
(Fig. 3b). If all M channels have identical amplitudes, the uncer-
tainty from un-weighted averaging rapidly increases with decreas-
ing SNR and becomes proportional to the noise power of the
additional channels (Fig. 3c). As with the two channel case, the
sensitivity weighted average would appear identical to Fig. 3a
when only the signal amplitude changes between channels and
Fig. 3c when only the noise power changes between channels. In
real experiments where amplitude and noise power changes both
contribute to SNR differences between channels would be ex-
pected to have a SNR dependence that lies between these two
extremes.

The bias in estimation of the decay rate constant was calculated
as the median bias over all two-channel simulated datasets. The %
bias for the sum-of-squares, and joint analysis is shown in Fig. 4 as
a function of SNR in the second channel. The sum-of-squares (SOS)
combination of channels demonstrates the expected negative bias
in the decay rate constant, with a greater bias when the noise
power varies between channels. The joint analysis is effectively
unbiased at all SNR values tested and is independent of whether
the amplitude or noise power differs between channels. The opti-
mally weighted average is also unbiased and the average and
weighted average analyses exhibit a minimal bias only at the low-
est SNR values (data not shown).

4. Discussion

The theoretical analysis and computer generated experiments
above demonstrate that two approaches, joint analysis and the
‘‘optimal” weighted average, give the most accurate and precise re-
sults for parameter estimation from multi-channel data. While the
‘‘optimal” weighted average method requires knowledge of the
noise power and amplitude for each pixel in each channel (infor-
mation not always readily available), the joint Bayesian analysis
‘‘automatically” takes care of this problem by effectively weighting
the contributions from the different channels based upon the
strength of their projection onto the model.
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The estimates for parameter accuracy produced in this Bayesian
analysis are conservative and consistent with the information
explicitly stated in the model definition. If additional information
is available, e.g. reliable sensitivity profiles for the array channel
elements, this can be incorporated into the joint Bayesian analysis
and may improve the quality of the parameter estimation. How-
ever, as these sensitivity profiles can also depend upon RF coil
loading and the acquisition parameters used for sensitivity map-
ping, caution should be exercised when incorporating this informa-
tion into this or other analyses.

Most previous treatments of multi-channel data have assumed
that all channels are independent, but share the same noise power.
As the noise in a given channel depends upon the coil construction,
its loading, which may be different for array elements positioned
about different regions of the subject’s body, the degree of inter-
channel coupling, and whether the noise is sample- or coil-limited,
this assumption may not be valid in a particular experiment. Sys-
tematic effects in the data that are not fully modeled, such as noise
correlations between channels or the Rican noise profile induced
by processing the magnitude images from each channel, can add
coherently upon channel combination and significantly distort the
resulting parameter estimates. The joint Bayesian analysis of chan-
nels minimizes these effects, and provides a rigorous framework
for incorporating factors such as inter-channel noise correlations.

As apparent from Eq. (13), the parameter uncertainty using the
joint analysis is independent of whether the amplitude or the noise
power is varying across channels and depends only upon the resul-
tant signal-to-noise ratio. In contrast, the un-weighted or sensitiv-
ity-weighted average analyses, Eq. (18), are strongly dependent
upon how these quantities individually vary.

As expected, the accuracy and precision of the parameter esti-
mates improves with increasing SNR for all channel combinations.
The joint analysis utilizes the additional information contained in
low SNR channels without corrupting the high SNR channels and
therefore produces parameter estimates that are always better
than or equal to the one channel result. In contrast, the accuracy
and precision of parameter estimates obtained after channel com-
bination are sometimes degraded by the inclusion of a lower SNR
channel, producing less accurate and precise results than if the
high SNR channel was analyzed alone. This is especially true if
the noise standard deviation varies between the two channels, as
most combination techniques assume this is constant for all chan-
nels. The impact of non-optimal channel combination on the preci-
sion of parameter estimates increases with the number of low SNR
channels and the number of sampling times (especially those with
lower SNR).

Compensating for the reduced effective SNR of non-optimally
combined data requires additional scanner time or improved hard-
ware. For example, when using an eight channel array, if one chan-
nel has twice the SNR of the other channels for a given pixel or
dataset, then a non-optimal channel combination can reduce the
effective SNR by up to 10%, requiring a 14% increase in imaging
time to compensate. If instead we assume that one channel has a
four times greater SNR, the decrease in effective SNR could be as
large as 64%, requiring a 167% increase in imaging time. In contrast,
the joint analysis produces the maximum effective SNR with no
additional scanner time and without distorting the signal relation-
ships within a series of images. While a joint analysis is more com-
putationally intensive than traditional methods, with modern
computers this is less of a limitation.

The significance of these effects will depend upon SNR and the
individual coil configuration. Laboratory-built arrays and arrays
using heterogeneous elements, such as combined head and spine
arrays, would be the most likely to display variations in the noise
standard deviation. As the sensitivity of a surface coil array ele-
ment is roughly proportional to the element’s radius [26], large in-
ter-coil differences in signal would be most prevalent when the
physical extent of the array is much larger than the radius of the
individual elements, such as in linearly aligned arrays and arrays
with a large number of elements.

We have also assumed that the data from each channel are indi-
vidually phased and that the analysis is performed only upon the
‘‘real” channel, which contains the entire signal while the noise is
evenly distributed between the ‘‘real” and ‘‘imaginary” channels.
Instead, if the magnitude images from each channel are analyzed,
we distort the decay curve by introducing a DC offset for each
channel, especially at values with low SNR. This offset will coher-
ently add across the channels and produce a systematic underesti-
mation of the decay rate constant if it is not incorporated into the
data model. This would produce an effect analogous to the SOS
data in Fig. 4. While proper modeling of the Rician noise distribu-
tion and the resulting DC offset can mitigate these effects
[10,15,17–20], the increased model complexity and the uncer-
tainty in the sign of low SNR data will still decrease the precision
of the parameter estimates.

Implementing the joint analysis of the phased signals from each
channel requires saving the raw, uncombined data from the indi-
vidual channel elements. Saving this data is not the default behav-
ior on many scanners and may not be possible with configurations
where the individual coil signals are combined electronically prior
to detection. However, even when only magnitude data are avail-
able, a joint analysis of the channels will still provide equal or
superior parameter estimates to the coil combination methods de-
scribed above (data not shown).
5. Conclusions

When analyzing data acquired using a phased array coil, the
joint analysis of phased images provides the most robust parame-
ter estimates. The accuracy and precision of these estimates are as
good as or better than can be obtained from the channel combina-
tion methods considered here, without requiring reference scans or
assumptions of constant noise power across channels. Of the pos-
sible channel combination methods, weighted averaging using the
signal amplitude divided by the noise variance is an acceptable
alternative provided that spatial profiles of the signal amplitude
and noise standard deviation are known or can be accurately esti-
mated for each channel.

The use of incorrect weighting factors decreases the effective
SNR and can introduce a bias into the parameter estimates, some-
times producing less accurate and precise results than would be
obtained from analyzing the single highest SNR channel alone. This
effect is amplified at low SNR, for increased number of low SNR
channels, increased number of low SNR points in the decay curve,
and when noise power varies across channels. Sensitivity weighted
images and sum-of-squares both assume that the noise power is
identical across channels, which may not be valid for all cases.
The sum-of-squares combination of all images, the default in many
systems, introduces a known bias into the parameter estimation
and therefore should generally be avoided.
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